Type-II Ising pairing in few-layer stanene
نویسندگان
چکیده
منابع مشابه
Stanene: Atomically Thick Free-standing Layer of 2D Hexagonal Tin
Stanene is one of most important of 2D materials due to its potential to demonstrate room temperature topological effects due to opening of spin-orbit gap. In this pursuit we report synthesis and investigation of optical properties of stanene up to few layers, a two-dimensional hexagonal structural analogue of graphene. Atomic scale morphological and elemental characterization using HRTEM equip...
متن کاملFew-layer HfS2 transistors
HfS2 is the novel transition metal dichalcogenide, which has not been experimentally investigated as the material for electron devices. As per the theoretical calculations, HfS2 has the potential for well-balanced mobility (1,800 cm(2)/V·s) and bandgap (1.2 eV) and hence it can be a good candidate for realizing low-power devices. In this paper, the fundamental properties of few-layer HfS2 flake...
متن کاملPhonons in single-layer and few-layer MoS2 and WS2
We report ab initio calculations of the phonon dispersion relations of the single-layer and bulk dichalcogenides MoS2 and WS2. We explore in detail the behavior of the Raman-active modes A1g and E1 2g as a function of the number of layers. In agreement with recent Raman spectroscopy measurements [C. Lee et al., ACS Nano 4, 2695 (2010)], we find that the A1g mode increases in frequency with an i...
متن کاملWeak localization in electric-double-layer gated few-layer graphene
We induce surface carrier densities up to ∼ ⋅ 7 1014 cm−2 in few-layer graphene devices by electric double layer gating with a polymeric electrolyte. In 3-, 4and 5-layer graphene below 20–30 K we observe a logarithmic upturn of resistance that we attribute to weak localization in the diffusive regime. By studying this effect as a function of carrier density and with ab initio calculations we de...
متن کاملCharge carriers in few-layer graphene films.
The nature of the charge carriers in 2D few-layer graphites (FLGs) has been recently questioned by transport measurements [K. S. Novoselov, Science 306, 666 (2004)10.1126/science.1102896] and a strong ambipolar electric field effect has been revealed. Our density functional calculations demonstrate that the electronic band dispersion near the Fermi level, and consequently the nature of the char...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science
سال: 2020
ISSN: 0036-8075,1095-9203
DOI: 10.1126/science.aax3873